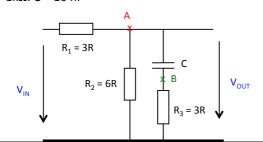
Eléments pour les exercices 1 et 2

Ce montage sera utilisé dans les exercices 1 et 2. Toutes les résistances s'expriment en fonction de $R = 1k\Omega$. C = 10 nF



Exercice 1 - Bode:

On s'intéresse à V_{OUT}/V_{IN}, avec V_{IN} sinusoïdale

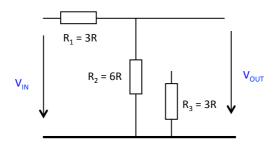
Exercice 2 - Saut indiciel:

- On s'intéresse aux tensions aux points A et B,
- V_{IN} est un signal carré avec f = 1kHz et ses deux paliers possibles sont 0V et V_{CC} = 5 V

Exercice 1: Bode

1.1 Calculer v_{OUT}/v_{IN} quand $\omega \rightarrow 0$

Le comportement du condensateur est celui d'un circuit ouvert (équivalent à une impédance infinie car $Z_C = \frac{1}{i\omega C}$). Le circuit se réduit alors à une combinaison de résistances :

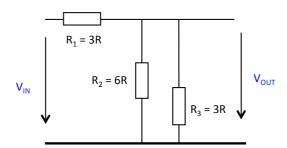


La résistance R_3 ne joue aucun rôle car aucun courant ne la traverse. V_{OUT}/V_{IN} peut alors s'exprimer sous la forme :

$$\frac{V_{OUT}}{V_{IN}} = \frac{R_2}{R_1 + R_2} = \frac{6R}{6R + 3R} = \frac{2}{3}$$

1.2 Calculer $\underline{v}_{OUT}/\underline{v}_{IN}$ quand $\omega \rightarrow \infty$

Le comportement du condensateur est celui d'un court-circuit (équivalent à une impédance nulle). Le circuit se réduit alors à une nouvelle combinaison de résistances :



La résistance R_3 est cette fois en parallèle avec R_2 . V_{OUT}/V_{IN} peut alors s'exprimer sous la forme :

$$\frac{V_{OUT}}{V_{IN}} = \frac{R_2//R_3}{R_1 + R_2//R_3} = \frac{R_2.R_3}{R_2.R_3 + R_1.R_3 + R_1.R_2} = \frac{18}{45} = \frac{2}{5}$$

1.3 Donner les expressions des impédances Z_1 (vue entre v_{IN} et V_{OUT}) et Z_2 (vue par V_{OUT})

$$Z_1 = R_1$$

$$Z_{2} = \left(\frac{1}{j\omega C} + R_{3}\right) / / R_{2} = \frac{1 + j\omega R_{3}C}{j\omega C} / / R_{2} = \frac{\frac{1 + j\omega R_{3}C}{j\omega C} \cdot R_{2}}{\frac{1 + j\omega R_{3}C}{j\omega C} + R_{2}} = \frac{R_{2} \cdot \frac{1 + j\omega R_{3}C}{1 + j\omega (R_{2} + R_{3})C}}{\frac{1 + j\omega (R_{2} + R_{3})C}{1 + j\omega (R_{2} + R_{3})C}}$$

1.4 Donner l'expression de la fonction de transfert $\underline{H}(j\omega)$

$$\frac{V_{OUT}}{V_{IN}} = H(j\omega) = \frac{Z_2}{Z_1 + Z_2} = \frac{R_2 \cdot \frac{1 + j\omega R_3 C}{1 + j\omega (R_2 + R_3)C}}{R_2 \cdot \frac{1 + j\omega R_3 C}{1 + j\omega (R_2 + R_3)C} + R_1} = \frac{R_2 \cdot [1 + j\omega R_3 C]}{R_2 \cdot [1 + j\omega R_3 C] + R_1 \cdot [1 + j\omega (R_2 + R_3)C]}$$

$$H(j\omega) = \frac{R_2 \cdot [1 + j\omega R_3 C]}{(R_2 + R_1) \left[1 + j\omega \frac{R_2 \cdot R_3 + R_1 \cdot R_3 + R_1 \cdot R_2}{R_2 + R_1} C\right]} = \frac{R_2}{R_2 + R_1} \cdot \frac{[1 + j\omega R_3 C]}{\left[1 + j\omega \frac{R_2 \cdot R_3 + R_1 \cdot R_3 + R_1 \cdot R_2}{R_2 + R_1} C\right]}$$

Cette expression est de la forme :

$$\begin{split} H(j\omega) &= K. \frac{\left[1 + j\frac{\omega}{\omega_1}\right]}{\left[1 + j\frac{\omega}{\omega_2}\right]} \ avec \ K = \frac{R_2}{R_2 + R_1} = \frac{2}{3}, \\ \omega_1 &= \frac{1}{R_3C} = \frac{10^5}{3} rad/s \ et \ \omega_2 = \frac{R_2 + R_1}{(R_2, R_3 + R_1, R_3 + R_1, R_2)C} = \frac{10^5}{5} rad/s \end{split}$$

1.5 Donner l'expression du module $|\underline{H}(j\omega)|$

$$|H(j\omega)| = |K| \cdot \frac{\left|1 + j\frac{\omega}{\omega_1}\right|}{\left|1 + j\frac{\omega}{\omega_2}\right|} = K \cdot \frac{\sqrt{1 + \left(\frac{\omega}{\omega_1}\right)^2}}{\sqrt{1 + \left(\frac{\omega}{\omega_2}\right)^2}} = \frac{R_2}{R_2 + R_1} \cdot \frac{\sqrt{1 + (\omega R_3 C)^2}}{\sqrt{1 + \left(\omega \frac{R_2 \cdot R_3 + R_1 \cdot R_3 + R_1 \cdot R_2}{R_2 + R_1} C\right)^2}}$$

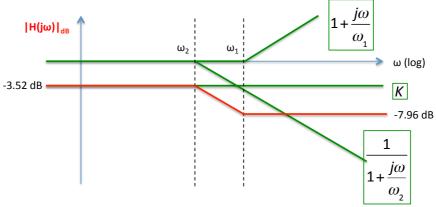
1.6 Analyse des limites du module lorsque ω -> 0

$$\lim_{\omega \to 0} |H(j\omega)| = \frac{R_2}{R_2 + R_1} \cdot \frac{\sqrt{1 + (0R_3C)^2}}{\sqrt{1 + \left(0\frac{R_2 \cdot R_3 + R_1 \cdot R_3 + R_1 \cdot R_2}{R_2 + R_1}C\right)^2}} = \frac{R_2}{R_2 + R_1} CQFD$$

1.7 Analyse des limites du module lorsque $\omega \to \infty$

$$\lim_{\omega \to \infty} |H(j\omega)| = \frac{R_2}{R_2 + R_1} \cdot \frac{\omega R_3 C}{\omega \frac{R_2 \cdot R_3 + R_1 \cdot R_2}{R_2 + R_1}} = \frac{R_2 \cdot R_3}{R_2 \cdot R_3 + R_1 \cdot R_3 + R_1 \cdot R_2} CQFD$$

1.8 Diagramme de Bode en module uniquement. L'allure est suffisante mais reporter les valeurs significatives (pulsations caractéristiques, pentes, paliers)

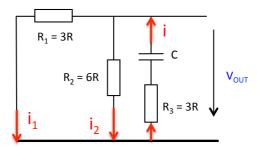


- palier haut lorsque $\omega \to 0 : 20 \log(2/3) = -3.52 \, dB$
- palier bas lorsque $\omega \rightarrow \infty$: 20 log(2/5) = -7.96 dB

Exercice 2: Saut indiciel

2.1 Calculer la valeur de τ

Le schéma équivalent du circuit permettant de déterminer τ est représenté ci-dessous. La source V_{IN} ne jouant aucun rôle est remplacée par un court circuit.



Le courant i qui décharge le condensateur se sépare en deux courants i_1 et i_2 qui circulent respectivement à travers R_1 et R_2 . Ces deux courants convergent en un même nœud pour reformer le courant i qui circule à travers R_3 .

On peut donc affirmer que C se décharge via la résistance équivalente R_{EQ} = $R_1//R_2$ + R_3

$$R_{EQ} = 5R = 5k\Omega$$

$$Et \tau = R_{EQ}.C = 5.10^3 * 10.10^{-9} = 50 \ \mu s$$

2.2 Les conditions sont-elles remplies pour que le condensateur se charge ou se décharge durant T/2 :

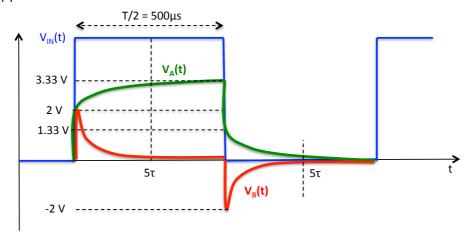
Pour que le condensateur soit considéré déchargé, on admet que la tension résiduelle ne doit pas dépasser 1% de la valeur de tension initiale. Cette situation est obtenue lorsque le temps à disposition pour la décharge est au moins égal à 5τ .

Dans l'exercice, $5\tau = 5*50~\mu s = 250~\mu s$ or le temps à disposition T/2 = 500 μs . La condition est donc suffisante.

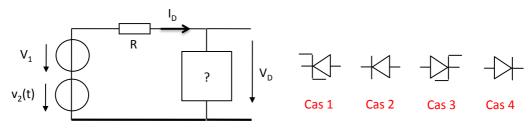
2.3 Reporter les valeurs de V_A et V_B aux temps t_1 , t_2 , t_3 , et t_4 formant les quatre angles du signal carré lors d'un cycle

En t ₁	Effet du saut pour V _A :	Effet du saut pour V _B :
	$V_{A_{Saut}} = V_{CC} \frac{R_2//R_3}{R_2//R_3 + R_1} = 2V$	$V_{B_{Saut}} = V_{CC} \frac{R_2//R_3}{R_2//R_3 + R_1} = 2V$
	situation avant le saut pour V_A :	situation avant le saut pour V _B :
	$V_{A_avantSaut} = 0V$	$V_{B_avantSaut} = 0V$
	$V_A(t_1) = V_{A_{Saut}} + V_{A_{avantSaut}} = 2V$	$V_B(t_1) = V_{B_{Saut}} + V_{B_{avantSaut}} = 2V$
En t ₂	R_3 est en l'air et n'est pas reliée à A	R ₃ est en l'air donc pas de courant et pas
	$V_A(t_2) = V_{CC} \frac{R_2}{R_2 + R_1} = \frac{2}{3} V_{CC} = 3.33V$	de différence de potentiel à ses bornes $V_B(t_2) = 0V$
En t ₃	Effet du saut pour V _A :	Effet du saut pour V _B :
	$V_{A_{Saut}} = -V_{CC} \frac{R_2//R_3}{R_2//R_3 + R_1} = -2V$	$V_{B_{Saut}} = -V_{CC} \frac{R_2//R_3}{R_2//R_3 + R_1} = -2V$
	situation avant le saut pour V_A :	situation avant le saut pour V _B :
	$V_{A_avantSaut} = V_A(t_2) = 3.33V$	$V_{B_avantSaut} = 0V$
	$V_A(t_3) = V_{A_{Saut}} + V_{A_{_avantSaut}} = 1.33V$	$V_B(t_3) = V_{B_{Saut}} + V_{B_{_avantSaut}} = -2V$
En t ₄	R₃ est en l'air et n'est pas reliée à A	R ₃ est en l'air donc pas de courant et pas
	$V_A(t_4) = 0.\frac{R_2}{R_2 + R_1} = 0V$	de différence de potentiel à ses bornes $V_B(t_4) = 0V$

2.4 Dessiner sur un même graphe et le plus précisément possible les courbes $V_{IN}(t)$, $V_{A}(t)$ et $V_{B}(t)$



Exercice 3 (diodes): Uj = 0.7V et V_z = 5V lorsqu'il s'agit d'une Zener (n et U_T inutiles ici). R = 1k Ω

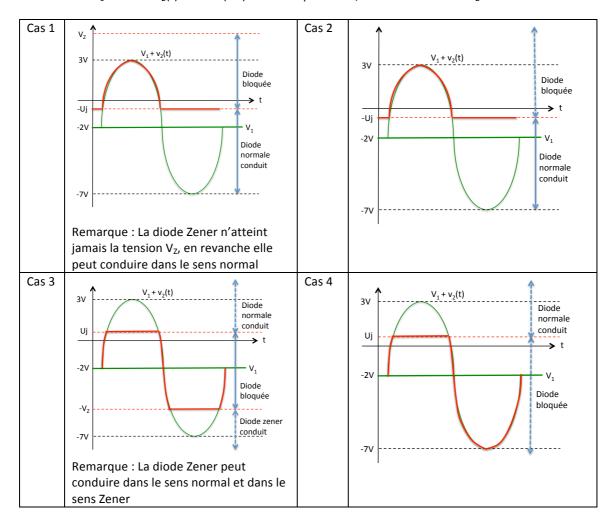


- 3.1 On fixe $V_1 = 3 \text{ V}$ et $v_2(t) = 0$. Pour les quatre cas, calculer les valeurs de V_D et de I_D Dans les quatre cas, V_1 est positive et le courant (s'il existe) ne peut circuler que de V_1 à la masse.
 - Cas 1: Le courant I_D, s'il existe, doit parcourir la diode Zener dans le sens Zener.
 Cependant, pour que la diode puisse conduire il faut que la tension V₁ ≥ V₂. Ce n'est pas le cas donc la diode est bloquée et aucun courant ne circule dans la boucle.
 Conséquence: I_D = 0 et V_D = V₁ = 3 V
 - Cas 2: Le courant I_D, s'il existe, doit parcourir la diode normale dans le sens inverse, ce qui est impossible. Dans ce cas, la diode est bloquée et aucun courant ne circule dans la boucle. Conséquence: I_D = 0 et V_D = V₁ = 3 V
 - Cas 3 : Le courant I_D , s'il existe, doit parcourir la diode Zener dans le sens normal. pour que la diode puisse conduire il faut que la tension $V_1 \ge U_j$ ce qui est le cas. Conséquence : $V_D = U_j$ et $I_D = \frac{V_1 V_D}{R} = 2.3 \ mA$
 - Cas 4: Le courant I_D, s'il existe, doit parcourir la diode normale dans le sens normal. pour que la diode puisse conduire il faut que la tension V₁ ≥ Uj ce qui est le cas.
 Conséquence: V_D = Uj et I_D = (V₁-V_D)/P = 2.3 mA
- 3.2 On fixe $V_1 = -5 \text{ V}$ et $v_2(t) = 0$. Pour les quatre cas, calculer les valeurs de V_D et de I_D Dans les quatre cas, V_1 est négative et le courant (s'il existe) ne peut circuler que de la masse à V_1 .
 - Cas 1 : Le courant I_D , s'il existe, doit parcourir la diode Zener dans le sens normal. Pour que la diode puisse conduire il faut que la tension $0-V_1 \ge U_J$. Ce qui est le cas. Conséquence : $V_D = -U_J$ et $I_D = \frac{V_1 V_D}{R} = -4.3 \ mA$

- Cas 2 : Le courant I_D , s'il existe, doit parcourir la diode normale dans le sens normal. Pour que la diode puisse conduire il faut que la tension $0-V_1 \ge Uj$. Ce qui est le cas. Conséquence : $V_D = -Uj$ et $I_D = \frac{V_1 V_D}{R} = -4.3 \text{ mA}$
- Cas 3: Le courant I_D, s'il existe, doit parcourir la diode Zener dans le sens Zener. Pour que la diode puisse conduire il faut que la tension 0-V₁ ≥ V_Z ce qui représente juste le cas limite.

Conséquence : $V_D = -V_Z$ et $I_D = \frac{V_1 - V_D}{R} = 0$

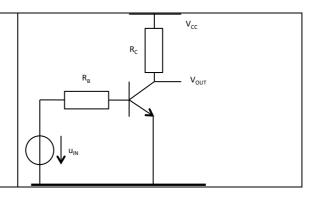
- Cas 4 : Le courant I_D , s'il existe, doit parcourir la diode normale dans le sens inverse, ce qui est impossible. Dans ce cas, la diode est bloquée et aucun courant ne circule dans la boucle. Conséquence : $I_D = 0$ et $V_D = V_1 = -5$ V
- 3.3 On fixe $V_1 = -2V$ et $v_2(t) = +5\sin(\omega t)$. Pour les quatre cas, dessiner l'allure de V_D



Exercice 4 (transistor):

On donne:

- V_{CC} = 15 V, R_B = 100 k Ω , R_C = 5 k Ω ,
- Uj = 0.7 V, β = 200, $V_C = V_{OUT}$



- 4.1 A partir de quelle valeur de U_{IN} , le transistor commence à conduire (préciser dans quel mode) Le transistor conduit dès que la diode Base-Emetteur (D_{BE}) atteint la tension Uj. Pour cela il faut $U_{IN} > U_{J}$ et le mode de fonctionnement est dit actif direct ou normal.
- 4.2 Calculer I_B, I_C, V_B, V_C (dans l'ordre que vous estimez correct) lorsque U_{IN} = 1V
 - Le paramètre le plus simple à obtenir est $V_E = 0$ V car l'émetteur est connecté à la masse.
 - Puisque $U_{IN} > Uj$, on sait que la diode D_{BE} conduit et présente à ses bornes une tension $V_{BE} = 0.7 \text{ V}$ ou encore $V_{BE} = V_B V_E$ soit $V_B = 0.7 \text{ V}$
 - La tension V_B permet de calculer I_B : $I_B = \frac{U_{IN} V_B}{R_B} = \frac{1 0.7}{10^5} = 3\mu A$
 - Avec I_B on calcule $I_C = \beta . I_B = 600 \mu A$
 - Avec I_c on a $V_c = V_{cc} R_c$. $I_c = 12 V$
- 4.3 Donner l'expression de V_{OUT} = $f(U_{IN})$ quand le transistor fonctionne en mode linéaire.

$$V_{OUT} = V_C = V_{CC} - R_C \cdot I_C = V_{CC} - R_C \cdot \beta \cdot I_B = V_{CC} - R_C \cdot \beta \cdot \frac{U_{IN} - V_B}{R_B} = -\frac{R_C \cdot \beta}{R_B} U_{IN} + V_{CC} + \frac{R_C \cdot \beta}{R_B} U_{IN} + \frac{R_C \cdot$$

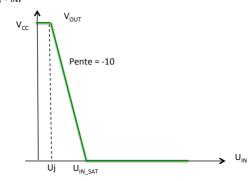
4.4 Calculer la valeur maximale du courant I_C et précisez le mode de fonctionnement du circuit. Le courant I_C est maximal lorsque toute la tension V_{CC} est appliquée sur la résistance R_C . Dans ce cas la différence de potentiel entre VC et VE est nulle. Le transistor est alors saturé.

La valeur de ce courant est $I_{CMAX} = \frac{V_{CC}}{R_C} = 3mA$

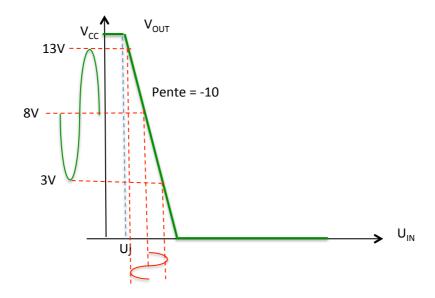
- 4.5 Calculer la valeur de U_{IN} permettant d'atteindre le mode de saturation du transistor Plusieurs méthodes de calcul sont applicables.
 - Il est tout de suite possible de trouver U_{IN} en posant l'équation :

$$V_{OUT} = 0 = V_{CC} - R_C \cdot \beta \cdot \frac{U_{IN_SAT} - Uj}{R_B}$$
 ou encore
$$\frac{V_{CC} = R_C \cdot \beta \cdot \frac{U_{IN_SAT} - Uj}{R_B}}{R_B} \rightarrow U_{IN_SAT} = V_{CC} \frac{R_B}{\beta R_C} + Uj = 2.2V$$

- Géométriquement il est facile de déterminer U_{IN_SAT} . En effet la pente vaut $-\frac{R_C \cdot \beta}{R_B} = -10$ Avec cette pente, il faut un accroissement de ΔU_{IN} de $V_{CC}/10 = 1.5V$ pour parcourir les 15V et ceci depuis le démarrage dès que $U_{IN} = U_J = 0.7V$, soit $U_{IN_SAT} = \Delta U_{IN} + U_J = 1.5 + 0.7 = 2.2V$
- 4.6 Dessiner la courbe $V_{OUT} = f(U_{IN})$



4.7 Représenter graphiquement le cas où U_{IN} = 1.4V + 0.5 sin ωt



4.8 Commenter le résultat

La relation entre
$${
m V_{OUT}}$$
 et ${
m V_{IN}}$ existe pour tous les points de ${
m V_{IN}}$. On a alors $V_{OUT}=V_{CC}-R_C$. β . $\frac{U_{IN}-Uj}{R_B}$

L'interprétation peut se limiter aux trois points suivants :

- $U_{IN} = 1.4 0.5 = 0.9 \text{ V}$ (lorsque sin atteint le creux) Dans ce cas $V_{OUT} = 15 - 10*(0.9 - 0.7) = 13V$
- $U_{IN} = 1.4 \text{ V (lorsque sin} = 0)$ Dans ce cas $V_{OUT} = 15 - 10*(1.4 - 0.7) = 8V$
- $U_{IN} = 1.4 + 0.5 = 1.9V$ (lorsque sin atteint la crête) Dans ce cas $V_{OUT} = 15 - 10*(1.9 - 0.7) = 3V$

Commentaires

- On remarque que U_{IN} est une tension continue à laquelle se superpose une variation sinusoïdale d'amplitude 0.5V
- V_{OUT} se présente aussi comme une tension continue (8V) à laquelle se superpose une tension sinusoïdale d'amplitude 5V.
- Ce circuit amplifie donc la variation sinusoïdale d'un facteur 10 (pente de la courbe).
- D'autre part on remarque un déphasage de 180° (π) entre les deux sinusoïdes. Le creux de U_{IN} correspond à la crête de V_{OUT} et réciproquement.